IA: Tamba

Année: 2021-2022

Classe : Terminale L

COMPOSITION HARMONISÉE DE MATHEMATIQUES DU SECOND SEMESTRE

EXERCICE 1

(8 points)

- 1. Soit $K(x) = x^2 + 3x 4$
 - a. Résoudre dans \mathbb{R} l'équation K(x) = 0. (1pt)
 - b. En déduire une factorisation de K(x). (1pt)
- 2. Soit $P(x) = x^3 6x^2 + 11x 6$
 - a. Montrer que 1 est une racine de P. (0,5pt)
 - b. Factoriser complètement P(x). (1pt)
- 3. On suppose P(x) = (x-1)(x-2)(x-3) et on pose $F(x) = \frac{P(x)}{K(x)}$.
 - a. Préciser la condition d'existence D_F de la fonction F. (1pt)
 - b. Simplifier F sur D_F . (0,5pt)
- Résoudre dans \mathbb{R} l'équation F(x) = 0 et l'inéquation $F(x) \leq 0$. (1pt + 1pt)
- Déduire de la question (1.a), les solutions de l'équation $e^{2x} + 3e^x 4 = 0$ (1pt)

EXERCICE 2

(9 points)

Soit la fonction numérique f de la variable réelle x, définie par $f(x) = \frac{x^2 + x - 2}{x + 1}$.

On appelle la représentation graphique de f dans un repère orthonormé $(0, \vec{1}, \vec{j})$.

- 1) Déterminer l'ensemble de définition D_f de f, puis étudier les limites de f aux bornes de D_f . (1pt + 1pt)
- 2) a) Montrer que la droite (D) d'équation y = x est une asymptote oblique à (C_f) et préciser l'autre asymptote. (1pt)b) Etudier la position de (C_f) par rapport à (D). (0,5pt)
- 3) Montrer que le point S (-1, -1) est centre de symétrie de (C_f) . (0,5pt)
- 4) Montrer que pour tout $x \in D_f$, $f'(x) = \frac{x^2 + 2x + 3}{(x+1)^2}$ puis établir le tableau de variation de f. (1pt + 1pt)
- 5) a) Montrer que (C_f) rencontre l'axe des abscisses aux points A et B d'abscisse respectives $x_A = -2$ et $x_B = 1$. (1pt)
 - b) Donner une équation de la tangente à (C_f) en A, puis une équation à (C_f) de la tangente en B. (1pt)
- 6) Construire (C_f) , les asymptotes et les tangentes en A et en B. (1pt)

EXERCICE 3

(3points)

Dans chacun des cas suivants, déterminer D_f , l'ensemble de définition de f et la dérivée f' de f.

- 1. $f(x) = \ln(3x 9)$
- 2. $f(x) = e^{(3x-9)}$
- 3. $f(x) = \frac{3}{e^{x}+1}$

Bonne chance !!

Cellule: Mathématiques

Durée: 3h